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Currents of the Bering Sea

North Aleutian Shelf quantify. Coastal waters along the northern the northwest, with magnitudes on the order of
boundary of Bristol Bay, also called the coastal 1-10 cm/s and a statistically significant cross-
current, continue to follow the bathymetry. The shelf component of about 1-5 cm/s.

The primary flow of water into the Bering coastal current flows northwesterly into the Ber-
Sea originates at Unimak Pass. The source ing Sea and then northerly along the Yukon Delta
water of this flow istheAlaskan Coastal Current, Yukon/Kuskokwim Delta. Thus, the fundamental
from south of the Aleutians. Within the pass and circulation in outer Bristol Bay consists of a
north of Unimak Island, much of the coastal cur- typically unclosed, counterclockwise gyre open The dominant current near the Yukon Delta

rent is entrained into the wind-driven flow along to the Bering Sea and driven by a combination of is the northward flowing Alaskan Coastal Water.

the north Aleutian coast. Typically, this current wind, tide, estuarian, and thermohaline effects. The current is thought to bifurcate at the north-

flows to the northeast into Bristol Bay in the west corner of the delta, with one fork flowing in-

direction of the prevailing wind, following Ninety to ninety-five percent of the velocity land, toward Norton Sound, and the remaining

bathymetry contours along the coast. At times, variance within the bay is tidal, with tidal cur- flow continuing northward (U.S. Navy 1958).

the north Aleutian coastal current will undergo a rents an order of magnitude largerthan the mean Local and seasonal effectscan produce variabil-

reversal in direction due to changes in the large- flow. For example, on the north Aleutian shelf, ity in the prevaili' g flow directions. In winter.

scale and mesoscale wind direction. Because where net currents are only 1-5 cm/s and the when winds are from the north, flow offshore of

winds are highly variable, their contribution to typical wind-driven currents are approximately the delta can actually reverse for days or weeks

net circulation is difficult to quantify, but the 10 cm/s at 5 m, the tidal currents are 40-80 cm/s at a time (Aagaard and Coachman 1981). This

alongshore component of winds is highly cor- or more (Thorsteinson 1984). Turbulence result- situation accounted for the flow of the Alaskan

related with both onshore and alongshore com- ing from tidal currents causes mixing of the Coastal Water about 30% of the time between

ponents of surface and subsurface currents. water column from the bottom to about 50-m September 1976 and March 1977 (Zimmerman

above the bottom. Tidal currents in Bristol Bay 1982). The surface currents offshore of the delta

Sea level changes on either side of Unimak are nearly reversing along the Alaska Peninsula tend to flow in the same general direction as the

Pass due to storm track and pressure cell move- and become more cyclonic and rotary offshore. synoptic and mesoscale winds, from the north or

ment are probably responsible for the fluctua- National Ocean Survey current tables show a northeast in winter and from the southwest dur-

tion of magnitude and direction in the flow change in maximum ebb currents from 20-25 ingopenwaterseason.Thetypicalsummerwind

through the pass, which at times is southward. cm/s up to 30-40 cm/s in June near Amak Island. frequently produces downwelling and shore-

These reversals are more likely to occur when Near Port Moller, the tidal current speeds are as ward transportof water, which results in a raised

the flow from the seasonally variable Alaskan high as 100 cm/s (U.S. Department of Commerce water level and increased wave energy near the

Coastal Current, from the Gulf of Alaska, is at its 1980). At a depth of 2m the calculated tidal coast.

minimum. The shoaling bottom through Unimak residual current is approximately 3-4cm/s,
Pass gives rise to vertical turbulence and mixes spatially highly variable, and directed to the nor- Norton Sound
the water column. thwest (Leendertse and Liu 1981).

The currents in Norton Sound are domi-
On the north Aleutian shelf, the net north- Kinder and Schumacher (1981) identified nated by regional wind and surface pressure pat-

easterly flow of approximately 1-5 cm/s is pres- three separate hydrographic flow regimes in the terns. The highest observed flow was measured
ent within the coastal zone (Baker 1983; Cline southeastern Bering Sea. The Coastal regime is at about 50 cm/s; flow decreased with increas-
et al. 1982; Thorsteinson 1984). This current is present inside the 50-m isobath in the vicinityof ing depth (Muench 1981). These atmosphere-
believed to be continuous with a weak current Nunivak Island. It is characterized by generally driven flow events maydiffer from the mean flow
past Nunivak Island (Kinder and Schumacher warm, low saline, vertically well-mixed water and produce uncertain, intermittentvariabilityin
1981). Near Port Moller, currents have smaller which has typical currents on the order of the circulation pattern. Oceanographic data
magnitudes and do not intensify near the coast. 2-5 cm/s toward the northwest. The Middle from the mouth of Norton Sound indicate a net
Close inshore, within 50 km, currents ranges regime is present in the central Bristol Bay northward water transport, with strong seasonal
from 1 to 6 cm/s (Kinder and Schumacher 1982). region, where water depths are on the order of differences in movement rates. Currents

50 to 100 m. It is divided from the coastal regime between the mouth of the sound and
A weak mean flow shows a cyclonic tend- bya front with an enhanced salinity gradient and St. Lawrence Island to the west are characteriz-

ency around the perimeter of Bristol Bay, with is characterized by a strongly stratified, two- ed by somewhat pulsive north-south flow events
maximum speeds (roughly 3.5 cm/s) found near layered structure extending approximately to having speedsof50-100 cm/s(Muench, Pearson,
and inside the 50-m isobath and in the coastal the 100-m isobath. Mean flow is generally less and Tripp 1978). These speeds contrast with re-
domain. Mean speeds observed in the central than 1 cm/s, with no characteristic vector-mean ported mean flow rates of 15 cm/s observed in
shelf domain were less than 1.0 cm/s, with no direction. The Outer hydrographic region is relative synchrony with major meteorological
sense of an organized circulation (Kinder and divided from the middle region by a front along events. The mean circulation pattern within the
Schumacher 1981). There Is apparently a net the 100-m isobath and is present out to the shelf sound is cyclonic in character(Drake et al. 1980).
westward convection of water from the cAntral break in the open waters beyond Bristol Bay. A A typical feature is westerly flow of water mass,
basin of Bristol Bay into the Berin6 Sea. fine vertical structure separates surface layers varying In extent and Intensity over time, along
However, flow in this central region is highly from the deeper, more well-mixed layers. The the northern coast (Cline, Muench, and Tripp
variable, atmospherically forced, and difficult to vector-mean current In this regime is directed to 1981). The tidal component in the sound is on the
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order of 50 cm/s and reverses either diurnally or coast, roughly following the bathymetry. This 4 cmls, with the tidal current accounting for
semidiurnally. The reversals are roughly north- flow varies in intensity and extent from year to 55 (-31)% of the fluctuation (Coachman, Salo,
east/southwest within Norton Sound. year. In the summer of 1979, a westerly mean and Schumacher 1983). Near St. Lawrence

flow paralleled the coastline and was super- Island, the Bering Sea narrows into two straits,
The upper- and lower-layer circulation is imposed upon a highly variable flow which the Shpanberg and Anadyr. 'North of the island

decoupled in the eastern sound, but less so in included reversals (Muench 1981). the two straits merge to form the Bering Strait.
the western sound, where there is a monotonic Circulation here is dominated by a northward
decrease in speed along with a slight rotation of Bering Strait mean flow ranging from 4 to 15 cm/s, with very
flow as depth increases. Northwesterly surface small tidal influences 24 (± 13)% variability
flow rotates to westerly nearthe bottom. In sum- (Coachman, Salo, Schumacher 1983). Flow in
mer, easterly flow enters the sound along its The Bering Sea is ch;acterized by an open both the Anadyr and Shpanberg is to the north,

southern shore, curves cyclonically tothe north, shelf south of St. Lawrence Island. Mean cur- approximately parallel to the local bathymetry.
and is then deflected to the west at the north rents are variable in direction and range from I to The flow appears to come from around botn ends
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Legend of St. Lawrence Island. Frequent reversals are 0.5 m lower than in the northern Bering Sea. A ma-

Bering Sea surface currents. Numbers coincidental with meteorological events. These jor cause of variations in the sea level difference
indicate mean speed in cm/s. Arrows reversals can affect the flow over vast regions must lie in fluctuations of the regional wind
depict flow as follows: covering thousands of square kilometers. The distribution. It is also possible that the at-

presence of ice appears to dampen the impact of mospheric pressure field may itself directly
4- Prevailing current direction wind stress forcing. The major driving force for modify the oceanic pressure field (Aagaard,

the northward flow through Bering Strait is the Coachman, and Tripp 1975).
4--- Variable current direction sea surface sloping down to the north (Aagaard

Bering Sea surface currents synthesized from and Coachman 1966). A slnpe of 2 x 10- is An examination of recent meteorologic data
Arsener 1967; Goodman et al. 1942: Kinder and associated with average summer northerly (Aagaard and Coachman 1981) showed the
Schumacher 1981, LaBelle 1983; Marine Advisory transport of approximately 1.6 x106 m3/s. The nor- following results. In every case of southerly flow
Program. Universify of Alaska: Notorov 1963: mal condition is, thus, one in which sea level in through the Bering Strait, the large-scale atmos-Peito 1981. Takenouti and Ohtahi 1974; and U.S.Navy 1977 the southern Chukchi Sea (in summer) is about pheric pressure patterns were the same. One day
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before a peak in southerly flow, a strong low- system behavestoamarkeddegreeasacoherent toward the northwest, so that the isobars in the
pressure system was centered some distance to unit, water levels at both St. Lawrence Island and strong pressure gradient are directed northward
the southeast of Bering Strait in the area of Cape Lisburne fall together and are nearly in from the central Bering Sea along the axis of the
Bristol Bay, Kodiak, Anchorage, and the northern phase with the transport. system. This configuration creates strong,
Gulf of Alaska. At the same time the Siberian high southerly winds which can move water from the
was centered some distance west or west- Northward transport stands in contrast to central Bering Sea onto the northern Bering Sea
northwest of the strait. The isobars signifying the the southerly transport events. Periods of north- shelf, raising the water level in the vicinity of
strongest pressure gradient between pressure erly flow tend to be more persistent and not so St. Lawrence Island and enhancing the sea-level
centers were located precisely over the Bering great in magnitude, nor do they show the marked slope down to the north.
Strait region. Most significantly, they had a nearly episodic character of the southerly flows. The
north-south orientation which extended from greater persistence of northerly flow must reflect Central Bering
over the Chukchi Sea south into the central Ber- the basic driving force, a higher sea level in the
ing Sea-completely across the northern Bering Bering Sea than in the Arctic Ocean (Coachman West and northwest of the North Aleutian
Sea shelf. If the north-south orientation of the et al. 1975), which still remains unexplained. Basin and Yukon Delta lies St. George Basin,
isobars did not extend totally across the northern There were, however, a number of relatively rapid the Central Bering Sea, and still further west, the
shelf or if the isobars were oriented northeast- northward accelerations of transport during the Navarin Basin. Circulation in these regions is
southwest (the nearest typical configuration), seven months of record which appearto have two not as well understood as in the coastal basins.
strong southerly flow events did not occur. basic causes: Fewer studies have been conducted in the off-

shore Bering. Data are site-specific and
The mechanism which drives major south (1) After strong south transport events, sporadic over decades. No consistent flow pat-

flow events now seems clear. Strong north winds rapid accelerations commonly occur which can terns have emerged as representative of the
mustdevelopovertheentirenorthernBeringSea, be thought of as compensatory. When atmos- regional circulation. In fact, there is little con-
not just over the immediate region of Bering pheric conditions causing the southerly trans- sensus among investigators that the principal
Strait. Large-scale, strong atmospheric pressure port event dissipate, water is not being removed flow is north-south, east-west, or cyclonic or
cellsarerequired:alowfar othesoutheastanda from the northern Bering shelf, but there is still anticyclonic in nature (See Natarov 1963;
high well to the west. The strong northerly winds voluminous southerly transport in the system. Arsen'ev 1967; Tak enovti and Ohtani 1974:
generated thereby move water southward off the Water "piles up" in the region around Goodman 1942; Ratmanov 1937). The northward
entire northern Bering Sea shelf. Removal of suf- St. Lawrence Island and Norton Sound, a condi- flowing, eastern boundary current is roughly
ficient water off the northern shelf generates a tion reflected by a strong, positive difference in balanced by a southward flow along the Soviet
sea-level slope down to the south-sea-level water level. Following this by about one day, a coast. Within the central region, flow is probably
slope has been shown to be the major force strong northward acceleration occurs. dominated by the location and strength of large-
driving transport through the strait (Coachman scale atmospheric pressure cells. Response
et al. 1975). This, together with the strong north (2) Occasionally, major northward accel- times, directions, and persistence are probably
winds caused by the east-west atmospheric erations appear to be, at least in part, directly of a similar scale as those controlling flow
pressure gradient, drives enhanced southerly driven by atmospheric conditions. Specifically, through the Bering Strait (Aagaard and
transport. These conditions apparently require these are a strong low pressure centered in the Coachman 1981). Thus, a dominant regional
about one day to develop, so that maximum south western Bering Sea southwest of Bering Strait, flow pattern is not readily observed nor easily
transport occurs the following day. Because the or a deep trough from the central Aleutians quantified.


